
NAG C Library Function Document

nag_dtgevc (f08ykc)

1 Purpose

nag_dtgevc (f08ykc) computes some or all of the right and/or left generalized eigenvectors of a pair of real
matrices ðA;BÞ which are in generalized real Schur form.

2 Specification

void nag_dtgevc (Nag_OrderType order, Nag_SideType side, Nag_HowManyType how_many,
const Boolean select[], Integer n, const double a[], Integer pda,
const double b[], Integer pdb, double vl[], Integer pdvl, double vr[],
Integer pdvr, Integer mm, Integer *m, NagError *fail)

3 Description

nag_dtgevc (f08ykc) computes some or all of the right and/or left generalized eigenvectors of the matrix
pair ðA;BÞ which is assumed to be in generalized upper Schur form. If the matrix pair ðA;BÞ is not in the
generalized upper Schur form, then nag_dhgeqz (f08xec) should be called before invoking nag_dtgevc
(f08ykc).

The right generalized eigenvector x and the left generalized eigenvector y of ðA;BÞ corresponding to a
generalized eigenvalue � are defined by

ðA� �BÞx ¼ 0

and

yHðA� �BÞ ¼ 0:

If a generalized eigenvalue is determined as 0=0, which is due to zero diagonal elements at the same
locations in both A and B, a unit vector is returned as the corresponding eigenvector.

Note that the generalized eigenvalues are computed using nag_dhgeqz (f08xec) but nag_dtgevc (f08ykc)
does not explicitly require the generalized eigenvalues to compute eigenvectors. The ordering of the
eigenvectors is based on the ordering of the eigenvalues as computed by nag_dtgevc (f08ykc).

If all eigenvectors are requested, the function may either return the matrices X and/or Y of right or left
eigenvectors of ðA;BÞ, or the products ZX and/or QY , where Z and Q are two matrices supplied by the
user. Usually, Q and Z are chosen as the orthogonal matrices returned by nag_dhgeqz (f08xec).
Equivalently, Q and Z are the left and right Schur vectors of the matrix pair supplied to nag_dhgeqz
(f08xec). In that case, QY and ZX are the left and right generalized eigenvectors, respectively, of the
matrix pair supplied to nag_dhgeqz (f08xec).

A must be block upper triangular; with 1 by 1 and 2 by 2 diagonal blocks. Corresponding to each 2 by 2
diagonal block is a complex conjugate pair of eigenvalues and eigenvectors; only one eigenvector of the
pair is computed, namely the one corresponding to the eigenvalue with positive imaginary part. Each 1 by
1 block gives a real generalized eigenvalue and a corresponding eigenvector.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ykc

[NP3645/7] f08ykc.1

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.

Anal. 10 241–256

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: side – Nag_SideType Input

On entry: specifies the required sets of generalized eigenvectors:

if side ¼ Nag RightSide, only right eigenvectors are computed;

if side ¼ Nag LeftSide, only left eigenvectors are computed;

if side ¼ Nag BothSides, both left and right eigenvectors are computed.

Constraint: side ¼ Nag BothSides, Nag LeftSide or Nag RightSide.

3: how_many – Nag_HowManyType Input

On entry: specifies further details of the required generalized eigenvectors:

if how many ¼ Nag ComputeAll, all right and/or left eigenvectors are computed;

if how many ¼ Nag BackTransform, all right and/or left eigenvectors are computed; they
are backtransformed using the input matrices supplied in arrays vr and/or vl;

if how many ¼ Nag ComputeSelected, selected right and/or left eigenvectors, defined by
the array select, are computed.

Constraint: how many ¼ Nag ComputeAll, Nag BackTransform or Nag ComputeSelected.

4: select½dim� – const Boolean Input

Note: the dimension, dim, of the array select must be at least maxð1;nÞ when
how many ¼ Nag ComputeSelected and at least 1 otherwise.

On entry: specifies the eigenvectors to be computed if how many ¼ Nag ComputeSelected. To
select the generalized eigenvector corresponding to the jth generalized eigenvalue, the jth element
of select should be set to TRUE; if the eigenvalue corresponds to a complex conjugate pair, then
real and imaginary parts of eigenvectors corresponding to the complex conjugate eigenvalue pair
will be computed.

Constraint: select½j� ¼ TRUE or FALSE for j ¼ 0; 1; . . . ; n� 1.

5: n – Integer Input

On entry: n, the order of the matrices A and B.

Constraint: n � 0.

6: a½dim� – const double Input

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.

f08ykc NAG C Library Manual

f08ykc.2 [NP3645/7]

On entry: the matrix pair ðA;BÞ must be in the generalized Schur form. Usually, this is the matrix
A returned by nag_dhgeqz (f08xec).

7: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � maxð1; nÞ.

8: b½dim� – const double Input

Note: the dimension, dim, of the array b must be at least maxð1; pdb� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix B is stored in b½ðj� 1Þ � pdbþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix B is stored in b½ði� 1Þ � pdbþ j� 1�.

On entry: the matrix pair ðA;BÞ must be in the generalized Schur form. If A has a 2 by 2 diagonal
block then the corresponding 2 by 2 block of B must be diagonal with positive elements. Usually,
this is the matrix B returned by nag_dhgeqz (f08xec).

9: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb � maxð1; nÞ.

10: vl½dim� – double Input/Output

Note: the dimension, dim, of the array vl must be at least

maxð1; pdvl�mmÞ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag ColMajor;

maxð1; pdvl� nÞ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag RowMajor;

1 when side ¼ Nag RightSide.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in vl½ðj� 1Þ � pdvlþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in vl½ði� 1Þ � pdvlþ j� 1�.
On entry: if how many ¼ Nag BackTransform and side ¼ Nag LeftSide or Nag BothSides, vl
must be initialised to an n by n matrix Q. Usually, this is the orthogonal matrix Q of left Schur
vectors returned by nag_dhgeqz (f08xec).

On exit: if side ¼ Nag LeftSide or Nag BothSides, vl contains:

if how many ¼ Nag ComputeAll, the matrix Y of left eigenvectors of ðA;BÞ;
if how many ¼ Nag BackTransform, the matrix QY ;

if how many ¼ Nag ComputeSelected, the left eigenvectors of ðA;BÞ specified by select,
stored consecutively in the rows or columns (depending on the value of order) of the array
vl, in the same order as their corresponding eigenvalues.

A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive rows or
columns, the first holding the real part, and the second the imaginary part.

11: pdvl – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vl.

Constraints:

if order ¼ Nag ColMajor,
if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1; nÞ;

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ykc

[NP3645/7] f08ykc.3

if side ¼ Nag RightSide, pdvl � 1;

if order ¼ Nag RowMajor,
if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1;mmÞ;
if side ¼ Nag RightSide, pdvl � 1.

12: vr½dim� – double Input/Output

Note: the dimension, dim, of the array vr must be at least

maxð1; pdvr�mmÞ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag ColMajor;

maxð1; pdvr� nÞ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag RowMajor;

1 when side ¼ Nag LeftSide.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in vr½ðj� 1Þ � pdvrþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in vr½ði� 1Þ � pdvrþ j� 1�.
On entry: if how many ¼ Nag BackTransform and side ¼ Nag RightSide or Nag BothSides, vr
must be initialised to an n by n matrix Z. Usually, this is the orthogonal matrix Z of right Schur
vectors returned by nag_dhgeqz (f08xec).

On exit: if side ¼ Nag RightSide or Nag BothSides, vr contains:

if how many ¼ Nag ComputeAll, the matrix X of right eigenvectors of ðA;BÞ;
if how many ¼ Nag BackTransform, the matrix ZX;

if how many ¼ Nag ComputeSelected, the right eigenvectors of ðA;BÞ specified by select,
stored consecutively in the rows or columns (depending on the value of order) of the array
vr, in the same order as their corresponding eigenvalues.

A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive rows or
columns, the first holding the real part, and the second the imaginary part.

13: pdvr – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vr.

Constraints:

if order ¼ Nag ColMajor,
if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1; nÞ;
if side ¼ Nag LeftSide, pdvr � 1;

if order ¼ Nag RowMajor,
if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1;mmÞ;
if side ¼ Nag LeftSide, pdvr � 1.

14: mm – Integer Input

On entry: the number of columns in the arrays vl and/or vr.

Constraints:

if how many ¼ Nag ComputeAll or Nag BackTransform, mm � n;
if how many ¼ Nag ComputeSelected, mm must not be less than the number of requested
eigenvectors.

15: m – Integer * Output

On exit: the number of columns in the arrays vl and/or vr actually used to store the eigenvectors. If
how many ¼ Nag ComputeAll or Nag BackTransform, m is set to n. Each selected real
eigenvector occupies one row or column and each selected complex eigenvector occupies two rows
or columns.

f08ykc NAG C Library Manual

f08ykc.4 [NP3645/7]

16: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdvl ¼ hvaluei.
Constraint: pdvl > 0.

On entry, pdvr ¼ hvaluei.
Constraint: pdvr > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.
On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � maxð1; nÞ.

NE_ENUM_INT_2

On entry, side ¼ hvaluei, n ¼ hvaluei, pdvl ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1; nÞ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ hvaluei, n ¼ hvaluei, pdvr ¼ hvaluei.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1; nÞ;
if side ¼ Nag LeftSide, pdvr � 1.

On entry, how many ¼ hvaluei, n ¼ hvaluei, mm ¼ hvaluei.
Constraint: if how many ¼ Nag ComputeAll or Nag BackTransform, mm � n;
if how many ¼ Nag ComputeSelected, mm must not be less than the number of requested
eigenvectors.

On entry, side ¼ hvaluei, mm ¼ hvaluei, pdvl ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1;mmÞ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ hvaluei, mm ¼ hvaluei, pdvr ¼ hvaluei.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1;mmÞ;
if side ¼ Nag LeftSide, pdvr � 1.

NE_CONSTRAINT

General constraint: select½j� ¼ TRUE or FALSE for j ¼ 0; . . . ; n� 1.

NE_NOT_COMPLEX

The 2 by 2 block ðhvaluei : hvaluei þ 1Þ does not have complex eigenvalues.

NE_ALLOC_FAIL

Memory allocation failed.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ykc

[NP3645/7] f08ykc.5

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

It is beyond the scope of this manual to summarize the accuracy of the solution of the generalized
eigenvalue problem. Interested readers should consult section 4.11 of the LAPACK Users’ Guide
(Anderson et al. (1999)) and Chapter 6 of Stewart and Sun (1990).

8 Further Comments

nag_dtgevc (f08ykc) is the sixth step in the solution of the real generalized eigenvalue problem and is
called after nag_dhgeqz (f08xec).

The complex analogue of this function is nag_ztgevc (f08yxc).

9 Example

The example program computes the � and � parameters, which defines the generalized eigenvalues and the
corresponding left and right eigenvectors, of the matrix pair ðA;BÞ given by

A ¼

1:0 1:0 1:0 1:0 1:0
2:0 4:0 8:0 16:0 32:0
3:0 9:0 27:0 81:0 243:0
4:0 16:0 64:0 256:0 1024:0
5:0 25:0 125:0 625:0 3125:0

1
CCCCA

0
BBBB@

and

B ¼

1:0 2:0 3:0 4:0 5:0
1:0 4:0 9:0 16:0 25:0
1:0 8:0 27:0 64:0 125:0
1:0 16:0 81:0 256:0 625:0
1:0 32:0 243:0 1024:0 3125:0

1
CCCCA

0
BBBB@

:

To compute generalized eigenvalues, it is required to call five functions: nag_dggbal (f08whc) to balance
the matrix, nag_dgeqrf (f08aec) to perform the QR factorization of B, nag_dormqr (f08agc) to apply Q to
A, nag_dgghrd (f08wec) to reduce the matrix pair to the generalized Hessenberg form and nag_dhgeqz
(f08xec) to compute the eigenvalues via the QZ algorithm.

The computation of generalized eigenvectors is done by calling nag_dtgevc (f08ykc) to compute the
eigenvectors of the balanced matrix pair. The function nag_dggbak (f08wjc) is called to backward
transform the eigenvectors to the user-supplied matrix pair. If both left and right eigenvectors are required
then nag_dggbak (f08wjc) must be called twice.

9.1 Program Text

/* nag_dtgevc (f08ykc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>

f08ykc NAG C Library Manual

f08ykc.6 [NP3645/7]

#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, icols, ihi, ilo, irows, j, m, n,pda, pdb, pdq, pdz;
Integer alpha_len, beta_len, scale_len, tau_len, select_len;
Integer exit_status=0;
Boolean ileft, iright;

NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *alphai=0, *alphar=0, *b=0, *beta=0, *lscale=0;
double *q=0, *rscale=0, *tau=0, *z=0;
Boolean *select=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define Q(I,J) q[(J-1)*pdq + I - 1]
#define Z(I,J) z[(J-1)*pdz + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define Q(I,J) q[(I-1)*pdq + J - 1]
#define Z(I,J) z[(I-1)*pdz + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08ykc Example Program Results\n\n");

/* ILEFT is TRUE if left eigenvectors are required */
/* IRIGHT is TRUE if right eigenvectors are required */
ileft = TRUE;
iright = TRUE;

/* Skip heading in data file */
Vscanf("%*[^\n] ");

Vscanf("%ld %*[^\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdb = n;
pdq = n;
pdz = n;

#else
pda = n;
pdb = n;
pdq = n;
pdz = n;

#endif
alpha_len = n;
beta_len = n;
scale_len = n;
tau_len = n;
select_len = n;

/* Allocate memory */
if (

!(a = NAG_ALLOC(n * n, double)) ||
!(alphai = NAG_ALLOC(alpha_len, double)) ||
!(alphar = NAG_ALLOC(alpha_len, double)) ||
!(b = NAG_ALLOC(n * n, double)) ||
!(beta = NAG_ALLOC(beta_len, double)) ||
!(lscale = NAG_ALLOC(scale_len, double)) ||
!(rscale = NAG_ALLOC(scale_len, double)) ||
!(q = NAG_ALLOC(n * n, double)) ||

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ykc

[NP3645/7] f08ykc.7

!(tau = NAG_ALLOC(tau_len, double)) ||
!(z = NAG_ALLOC(n * n, double)) ||
!(select = NAG_ALLOC(select_len, Boolean)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* READ matrix A from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");

/* READ matrix B from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &B(i,j));
}

Vscanf("%*[^\n] ");

/* Balance matrix pair (A,B) */
f08whc(order, Nag_DoBoth, n, a, pda, b, pdb, &ilo, &ihi, lscale,

rscale, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08whc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Matrix A after balancing */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,

"Matrix A after balancing", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Matrix B after balancing */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,

"Matrix B after balancing", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");

/* Reduce B to triangular form using QR */
irows = ihi + 1 - ilo;
icols = n + 1 - ilo;
f08aec(order, irows, icols, &B(ilo, ilo), pdb, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Apply the orthogonal transformation to matrix A */
f08agc(order, Nag_LeftSide, Nag_Trans, irows, icols, irows,

&B(ilo, ilo), pdb, tau, &A(ilo, ilo), pda, &fail);
if (fail.code != NE_NOERROR)

{

f08ykc NAG C Library Manual

f08ykc.8 [NP3645/7]

Vprintf("Error from f08agc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Initialize Q (if left eigenvectors are required) */
if (ileft)

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Q(i,j) = 0.0;
Q(i,i) = 1.0;

}
for (i = ilo+1; i <= ilo+irows-1; ++i)

{
for (j = ilo; j <= MIN(i,ilo+irows-2); ++j)

Q(i,j) = B(i,j);
}

f08afc(order, irows, irows, irows, &Q(ilo, ilo), pdq, tau,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f08afc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

/* Initialize Z (if right eigenvectors are required) */
if (iright)

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Z(i,j) = 0.0;
Z(i,i) = 1.0;

}
}

/* Compute the generalized Hessenberg form of (A,B) */
f08wec(order, Nag_UpdateSchur, Nag_UpdateZ, n, ilo, ihi, a, pda,

b, pdb, q, pdq, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08wec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Matrix A in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,

"Matrix A in Hessenberg form", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");

/* Matrix B in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,

"Matrix B in Hessenberg form", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ykc

[NP3645/7] f08ykc.9

/* Compute the generalized Schur form */
/* The Schur form also gives parameters */
/* required to compute generalized eigenvalues */
f08xec(order, Nag_Schur, Nag_AccumulateQ, Nag_AccumulateZ, n, ilo, ihi, a,

pda, b, pdb, alphar, alphai, beta, q, pdq, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08xec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the generalized eigenvalue parameters */
Vprintf("\n Generalized eigenvalues\n");
for (i = 1; i <= n; ++i)

{
if (beta[i-1] != 0.0)

{
Vprintf(" %4ld (%7.3f,%7.3f)\n", i,

alphar[i-1]/beta[i-1], alphai[i-1]/beta[i-1]);
}

else
Vprintf(" %4ldEigenvalue is infinite\n", i);

}
Vprintf("\n");

/* Compute left and right generalized eigenvectors */
/* of the balanced matrix */
f08ykc(order, Nag_BothSides, Nag_BackTransform, select, n, a, pda,

b, pdb, q, pdq, z, pdz, n, &m, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ykc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
if (iright)

{

/* Compute right eigenvectors of the original matrix */
f08wjc(order, Nag_DoBoth, Nag_RightSide, n, ilo, ihi, lscale,

rscale, n, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08wjc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the right eigenvectors */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, z, pdz,

"Right eigenvectors", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");

}

/* Compute left eigenvectors of the original matrix */
if (ileft)

{
f08wjc(order, Nag_DoBoth, Nag_LeftSide, n, ilo, ihi, lscale,

rscale, n, q, pdq, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08wjc.\n%s\n", fail.message);
exit_status = 1;
goto END;

f08ykc NAG C Library Manual

f08ykc.10 [NP3645/7]

}

/* Print the left eigenvectors */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, q, pdq,

"Left eigenvectors", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

END:
if (a) NAG_FREE(a);
if (alphai) NAG_FREE(alphai);
if (alphar) NAG_FREE(alphar);
if (b) NAG_FREE(b);
if (beta) NAG_FREE(beta);
if (lscale) NAG_FREE(lscale);
if (q) NAG_FREE(q);
if (rscale) NAG_FREE(rscale);
if (tau) NAG_FREE(tau);
if (z) NAG_FREE(z);
if (select) NAG_FREE(select);

return exit_status;
}

9.2 Program Data

f08ykc Example Program Data
5 :Value of N

1.00 1.00 1.00 1.00 1.00
2.00 4.00 8.00 16.00 32.00
3.00 9.00 27.00 81.00 243.00
4.00 16.00 64.00 256.00 1024.00
5.00 25.00 125.00 625.00 3125.00 :End of matrix A
1.00 2.00 3.00 4.00 5.00
1.00 4.00 9.00 16.00 25.00
1.00 8.00 27.00 64.00 125.00
1.00 16.00 81.00 256.00 625.00
1.00 32.00 243.00 1024.00 3125.00 :End of matrix B

9.3 Program Results

f08ykc Example Program Results

Matrix A after balancing
1 2 3 4 5

1 1.0000 1.0000 0.1000 0.1000 0.1000
2 2.0000 4.0000 0.8000 1.6000 3.2000
3 0.3000 0.9000 0.2700 0.8100 2.4300
4 0.4000 1.6000 0.6400 2.5600 10.2400
5 0.5000 2.5000 1.2500 6.2500 31.2500
Matrix B after balancing

1 2 3 4 5
1 1.0000 2.0000 0.3000 0.4000 0.5000
2 1.0000 4.0000 0.9000 1.6000 2.5000
3 0.1000 0.8000 0.2700 0.6400 1.2500
4 0.1000 1.6000 0.8100 2.5600 6.2500
5 0.1000 3.2000 2.4300 10.2400 31.2500

Matrix A in Hessenberg form
1 2 3 4 5

1 -2.1898 -0.3181 2.0547 4.7371 -4.6249
2 -0.8395 -0.0426 1.7132 7.5194 -17.1850
3 0.0000 -0.2846 -1.0101 -7.5927 26.4499
4 0.0000 0.0000 0.0376 1.4070 -3.3643
5 0.0000 0.0000 0.0000 0.3813 -0.9937

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ykc

[NP3645/7] f08ykc.11

Matrix B in Hessenberg form
1 2 3 4 5

1 -1.4248 -0.3476 2.1175 5.5813 -3.9269
2 0.0000 -0.0782 0.1189 8.0940 -15.2928
3 0.0000 0.0000 1.0021 -10.9356 26.5971
4 0.0000 0.0000 0.0000 0.5820 -0.0730
5 0.0000 0.0000 0.0000 0.0000 0.5321

Generalized eigenvalues
1 (-2.437, 0.000)
2 (0.607, 0.795)
3 (0.607, -0.795)
4 (1.000, 0.000)
5 (-0.410, 0.000)

Right eigenvectors
1 2 3 4 5

1 -4.9374e-02 -2.0772e-01 2.5702e-02 -7.4074e-02 -6.9466e-02
2 1.0606e-01 1.7848e-01 8.8325e-02 1.3545e-01 1.3605e-01
3 -1.0000e-01 -5.3742e-02 -4.6258e-02 -1.0000e-01 -1.0000e-01
4 4.3761e-02 8.0277e-03 1.3765e-02 2.6455e-02 3.1879e-02
5 -7.0192e-03 -5.5974e-04 -2.0807e-03 -3.7037e-03 -3.5534e-03

Left eigenvectors
1 2 3 4 5

1 -6.9466e-02 -2.0922e-01 -5.2678e-03 -7.4074e-02 4.9374e-02
2 1.3605e-01 1.6346e-01 1.1371e-01 1.3545e-01 -1.0606e-01
3 -1.0000e-01 -4.6314e-02 -5.3686e-02 -1.0000e-01 1.0000e-01
4 3.1879e-02 5.9054e-03 1.4799e-02 2.6455e-02 -4.3761e-02
5 -3.5534e-03 -2.4617e-04 -2.1404e-03 -3.7037e-03 7.0192e-03

f08ykc NAG C Library Manual

f08ykc.12 (last) [NP3645/7]

	f08ykc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	how_many
	select
	n
	a
	pda
	b
	pdb
	vl
	pdvl
	vr
	pdvr
	mm
	m
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_CONSTRAINT
	NE_NOT_COMPLEX
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

