f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ykc

NAG C Library Function Document
nag_dtgeve (f08ykc)

1 Purpose

nag_dtgeve (f08ykc) computes some or all of the right and/or left generalized eigenvectors of a pair of real
matrices (A, B) which are in generalized real Schur form.

2 Specification

void nag_dtgevc (Nag_OrderType order, Nag_SideType side, Nag_HowManyType how_many,
const Boolean select[], Integer n, const double a[], Integer pda,
const double b[], Integer pdb, double vl[], Integer pdvl, double vr[],
Integer pdvr, Integer mm, Integer *m, NagError xfail)

3 Description

nag_dtgeve (f08ykc) computes some or all of the right and/or left generalized eigenvectors of the matrix
pair (A4, B) which is assumed to be in generalized upper Schur form. If the matrix pair (A, B) is not in the
generalized upper Schur form, then nag dhgeqz (f08xec) should be called before invoking nag dtgevc
(f08ykc).

The right generalized eigenvector x and the left generalized eigenvector y of (A, B) corresponding to a
generalized eigenvalue A are defined by

(A= AB)z =0
and
y"(A—AB) =0.

If a generalized eigenvalue is determined as 0/0, which is due to zero diagonal elements at the same
locations in both A and B, a unit vector is returned as the corresponding eigenvector.

Note that the generalized eigenvalues are computed using nag_dhgeqz (f08xec) but nag dtgevc (f08ykc)
does not explicitly require the generalized eigenvalues to compute eigenvectors. The ordering of the
eigenvectors is based on the ordering of the eigenvalues as computed by nag dtgevc (fO8ykc).

If all eigenvectors are requested, the function may either return the matrices X and/or Y of right or left
eigenvectors of (A, B), or the products ZX and/or QY, where Z and @) are two matrices supplied by the
user. Usually, @) and Z are chosen as the orthogonal matrices returned by nag dhgeqz (f08xec).
Equivalently, @ and Z are the left and right Schur vectors of the matrix pair supplied to nag_dhgeqz
(f08xec). In that case, QY and ZX are the left and right generalized eigenvectors, respectively, of the
matrix pair supplied to nag dhgeqz (f08xec).

A must be block upper triangular; with 1 by 1 and 2 by 2 diagonal blocks. Corresponding to each 2 by 2
diagonal block is a complex conjugate pair of eigenvalues and eigenvectors; only one eigenvector of the
pair is computed, namely the one corresponding to the eigenvalue with positive imaginary part. Each 1 by
1 block gives a real generalized eigenvalue and a corresponding eigenvector.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

[NP3645/7] f08yke. 1

fO8yke NAG C Library Manual

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.
Anal. 10 241-256

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

5

1:

Parameters

order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint. order = Nag_ RowMajor or Nag_ColMajor.

side — Nag_SideType Input
On entry: specifies the required sets of generalized eigenvectors:

if side = Nag_RightSide, only right eigenvectors are computed,;

if side = Nag_LeftSide, only left eigenvectors are computed,;

if side = Nag_BothSides, both left and right eigenvectors are computed.
Constraint. side = Nag_BothSides, Nag_LeftSide or Nag_RightSide.

how_many — Nag HowManyType Input
On entry: specifies further details of the required generalized eigenvectors:
if how_many = Nag_ComputeAll, all right and/or left eigenvectors are computed;

if how_many = Nag_BackTransform, all right and/or left eigenvectors are computed; they
are backtransformed using the input matrices supplied in arrays vr and/or vl;

if how_many = Nag_ComputeSelected, selected right and/or left eigenvectors, defined by
the array select, are computed.

Constraint: how_many = Nag_ComputeAll, Nag_BackTransform or Nag_ComputeSelected.

select[dim] — const Boolean Input

Note: the dimension, dim, of the array select must be at least max(l,n) when
how_many = Nag_ComputeSelected and at least 1 otherwise.

On entry: specifies the eigenvectors to be computed if how_many = Nag_ComputeSelected. To
select the generalized eigenvector corresponding to the jth generalized eigenvalue, the jth element
of select should be set to TRUE; if the eigenvalue corresponds to a complex conjugate pair, then
real and imaginary parts of eigenvectors corresponding to the complex conjugate eigenvalue pair
will be computed.

Constraint: select[j] = TRUE or FALSE for j=0,1,...,n — 1.

n — Integer Input
On entry: n, the order of the matrices A and B.

Constraint: n > 0.

a[dim] — const double Input
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

f08yke.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ykc

10:

11:

On entry: the matrix pair (A, B) must be in the generalized Schur form. Usually, this is the matrix
A returned by nag_dhgeqz (f08xec).
pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1,n).

b[dim] — const double Input
Note: the dimension, dim, of the array b must be at least max(1, pdb x n).

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the matrix pair (A, B) must be in the generalized Schur form. If A has a 2 by 2 diagonal
block then the corresponding 2 by 2 block of B must be diagonal with positive elements. Usually,
this is the matrix B returned by nag_dhgeqz (f08xec).

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb > max(1,n).

vl[dim| — double Input/Output

Note: the dimension, dim, of the array vl must be at least

max(1, pdvl x mm) when side = Nag_LeftSide or Nag_BothSides and
order = Nag_ColMajor;

max(1, pdvl x n) when side = Nag_LeftSide or Nag_BothSides and
order = Nag_RowMajor;

1 when side = Nag_RightSide.

If order = Nag_ColMajor, the (4, j)th element of the matrix is stored in vI[(j — 1) x pdvl + ¢ — 1] and
if order = Nag_RowMajor, the (i,5)th element of the matrix is stored in vl[(i — 1) x pdvl+ j — 1].

On entry: if how_many = Nag BackTransform and side = Nag LeftSide or Nag BothSides, vl
must be initialised to an n by n matrix Q. Usually, this is the orthogonal matrix ¢ of left Schur
vectors returned by nag dhgeqz (f08xec).

On exit: if side = Nag_LeftSide or Nag_BothSides, vl contains:
if how_many = Nag_ComputeAll, the matrix Y of left eigenvectors of (A, B);
if how_many = Nag_BackTransform, the matrix QY;

if how_many = Nag_ComputeSelected, the left eigenvectors of (A, B) specified by select,
stored consecutively in the rows or columns (depending on the value of order) of the array
vl, in the same order as their corresponding eigenvalues.

A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive rows or
columns, the first holding the real part, and the second the imaginary part.
pdvl — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vl.

Constraints:

if order = Nag_ColMajor,
if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1,n);

[NP3645/7] f08yke.3

f08yke NAG C Library Manual

if side = Nag RightSide, pdvl > 1;

if order = Nag_RowMajor,
if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1, mm);
if side = Nag_RightSide, pdvl > 1.

12: vr[dim| — double Input/Output

Note: the dimension, dim, of the array vr must be at least

max(1, pdvr X mm) when side = Nag_RightSide or Nag_BothSides and
order = Nag_ColMajor;

max(1, pdvr X n) when side = Nag_RightSide or Nag_BothSides and
order = Nag_RowMajor;

1 when side = Nag_LeftSide.

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in vr[(j — 1) x pdvr + ¢ — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix is stored in vr[(i — 1) x pdvr + j — 1].

On entry: if how_many = Nag_BackTransform and side = Nag_RightSide or Nag_BothSides, vr
must be initialised to an n by n matrix Z. Usually, this is the orthogonal matrix Z of right Schur
vectors returned by nag dhgeqz (fO08xec).

On exit: if side = Nag _RightSide or Nag_BothSides, vr contains:
if how_many = Nag_ComputeAll, the matrix X of right eigenvectors of (A, B);
if how_many = Nag_BackTransform, the matrix ZX;

if how_many = Nag_ComputeSelected, the right eigenvectors of (A4, B) specified by select,
stored consecutively in the rows or columns (depending on the value of order) of the array
vr, in the same order as their corresponding eigenvalues.

A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive rows or
columns, the first holding the real part, and the second the imaginary part.

13: pdvr — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vr.

Constraints:

if order = Nag_ColMajor,
if side = Nag_RightSide or Nag_BothSides, pdvr > max(1,n);
if side = Nag_LeftSide, pdvr > 1;

if order = Nag_RowMajor,
if side = Nag_RightSide or Nag_BothSides, pdvr > max(1, mm);
if side = Nag_LeftSide, pdvr > 1.
14: mm — Integer Input
On entry: the number of columns in the arrays vl and/or vr.
Constraints:

if how_many = Nag_ComputeAll or Nag_BackTransform, mm > n;
if how_many = Nag_ComputeSelected, mm must not be less than the number of requested
eigenvectors.

15 m — Integer * Output

On exit: the number of columns in the arrays vl and/or vr actually used to store the eigenvectors. If
how_many = Nag_ComputeAll or Nag BackTransform, m is set to n. FEach selected real
eigenvector occupies one row or column and each selected complex eigenvector occupies two rows
or columns.

f08yke.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ykc

16: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdvl = {value).
Constraint: pdvl > 0.

On entry, pdvr = (value).
Constraint: pdvr > 0.
NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).
NE_ENUM_INT 2

On entry, side = (value), n = (value), pdvl = (value).
Constraint: if side = Nag_LeftSide or Nag BothSides, pdvl > max(1,n);
if side = Nag_RightSide, pdvl > 1.

On entry, side = (value), n = (value), pdvr = (value).
Constraint: if side = Nag_RightSide or Nag_BothSides, pdvr > max(1,n);
if side = Nag_LeftSide, pdvr > 1.

On entry, how_many = (value), n = (value), mm = (value).

Constraint: if how_many = Nag_ComputeAll or Nag_BackTransform, mm > n;

if how_many = Nag_ComputeSelected, mm must not be less than the number of requested
eigenvectors.

On entry, side = (value), mm = (value), pdvl = (value).
Constraint: if side = Nag_LeftSide or Nag BothSides, pdvl > max(1, mm);
if side = Nag_RightSide, pdvl > 1.

On entry, side = (value), mm = (value), pdvr = (value).
Constraint: if side = Nag_RightSide or Nag_BothSides, pdvr > max(1, mm);
if side = Nag_LeftSide, pdvr > 1.

NE_CONSTRAINT
General constraint: select[j] = TRUE or FALSE for j=0,...,n— 1.

NE_NOT_COMPLEX
The 2 by 2 block ((value) : (value) + 1) does not have complex eigenvalues.

NE_ALLOC_FAIL

Memory allocation failed.

[NP3645/7] f08yke. 5

fO8yke NAG C Library Manual

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

It is beyond the scope of this manual to summarize the accuracy of the solution of the generalized
eigenvalue problem. Interested readers should consult section 4.11 of the LAPACK Users’ Guide
(Anderson et al. (1999)) and Chapter 6 of Stewart and Sun (1990).

8 Further Comments

nag_dtgeve (f08ykce) is the sixth step in the solution of the real generalized eigenvalue problem and is
called after nag_dhgeqz (f08xec).

The complex analogue of this function is nag ztgevc (f08yxc).

9 Example

The example program computes the o and (3 parameters, which defines the generalized eigenvalues and the
corresponding left and right eigenvectors, of the matrix pair (A, B) given by

1.0 1.0 1.0 1.0 1.0
20 4.0 80 16.0 32.0
A=1]30 90 270 81.0 243.0
4.0 160 64.0 256.0 1024.0
5.0 25.0 125.0 625.0 3125.0

and

1.0 2.0 3.0 4.0 5.0
1.0 4.0 9.0 16.0 25.0
B=1]110 8.0 270 64.0 125.0
1.0 16.0 81.0 2560 625.0
1.0 32.0 243.0 1024.0 3125.0

To compute generalized eigenvalues, it is required to call five functions: nag_dggbal (f08whc) to balance
the matrix, nag_dgeqrf (f08aec) to perform the QR factorization of B, nag dormgqr (f08agc) to apply @) to
A, nag_dgghrd (f08wec) to reduce the matrix pair to the generalized Hessenberg form and nag dhgeqz
(f08xec) to compute the eigenvalues via the Q7 algorithm.

The computation of generalized eigenvectors is done by calling nag dtgevc (f08ykc) to compute the
eigenvectors of the balanced matrix pair. The function nag dggbak (f08wjc) is called to backward
transform the eigenvectors to the user-supplied matrix pair. If both left and right eigenvectors are required
then nag dggbak (f08wjc) must be called twice.

9.1 Program Text
/* nag_dtgevc (f08ykc) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>

f08yke.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

#include <nagf08.h>
#include <nagx04.h>

int main(void)

{

/* Scalars *x/
Integer i, i
Integer alph

Boolean ilef

cols, ihi, ilo, irows, j, m,

a_len, beta_len, scale_len,
Integer exit_

status=0;
t, iright;

NagError fail;
Nag_OrderType order;
/* Arrays */

double
double

*a=0,
*q:O ,

*alphai=0, #*alphar=0, *b=0,

*rscale=0, *tau=0,

Boolean #*select=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define B() b[(J-1)*pdb + I - 1]

#define Q(I,J) qgql(J-1)#pdg + I - 1]

#define Z() z[(J 1)*pdz + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al[(I-1)*pda + JT - 1]

#define B(I,J) b[(I-1)*pdb + J - 1]

#define Q(I,J) ql(I-1)*pdg + J - 1]

#define 72(I,J) z[(I-1)*pdz + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);

Vprintf ("f08ykc Example Program Results\n\n")

/% ILEFT is

ileft

iright

= TRUE;

*z=0;

*beta=0,

7

n,pda, pdb, pdg, pdz;
tau_len,

select_len;

*1scale=0;

TRUE if left eigenvectors are required #*/
/* IRIGHT is TRUE if right eigenvectors are required =*/

= TRUE;

/* Skip heading in data file */
||9* \n ll);

Vscanf (

Vscanf ("s1d %*x[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdb = n;
pdg = n;
pdz = n;
#else
pda = n;
pdb = n;
pdg = n;
pdz = n;
#endif
alpha_len = n;
beta_len = n;
scale_len = n;
tau_len = n;

select_len =

n;

/* Allocate memory */

if (

! (a = NAG_ALLOC(n * n, double)) ||

! (alphai = NAG_ALLOC(alpha_len, double))
! (alphar = NAG_ALLOC(alpha_len, double))
(b = NAG_ALLOC(n * n, double)) ||

! (beta = NAG_ALLOC (beta_1len, double)) ||
! (lscale = NAG_ALLOC(scale_len, double))
! (rscale = NAG_ALLOC(scale_1len, double))
L(

g = NAG_ALLOC(n * n,

[NP3645/7]

double)) ||

f08ykc

f08yke.7

fO8yke NAG C Library Manual

! (tau = NAG_ALLOC(tau_len, double)) ||
1 (z = NAG_ALLOC(n * n, double)) ||
! (select = NAG_ALLOC(select_len, Boolean)))

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* READ matrix A from data file */
for (i = 1; i <= n; ++1)
{
for (3 = 1; j <= n; ++3)
Vscanf ("$1f", &A(i,3));
}

Vscanf ("%*[*\n] ");

/* READ matrix B from data file */
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= n; ++3)
Vscanf ("$1f", &B(i,3));
3

Vscanf ("sx["\n] ");

/* Balance matrix pair (A,B) */
f08whc (order, Nag_DoBoth, n, a, pda, b, pdb, &ilo, &ihi, lscale,
rscale, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08whc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Matrix A after balancing #*/
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,
"Matrix A after balancing", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Matrix B after balancing */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,
"Matrix B after balancing", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\n");

/* Reduce B to triangular form using QR */

irows = ihi + 1 - ilo;
icols = n + 1 - ilo;
fO8aec(order, irows, icols, &B(ilo, ilo), pdb, tau, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Apply the orthogonal transformation to matrix A */
fO08agc(order, Nag_LeftSide, Nag_Trans, irows, icols, irows,
&B(ilo, ilo), pdb, tau, &A(ilo, ilo), pda, &fail);
if (fail.code != NE_NOERROR)
{

f08yke.8 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ykc

Vprintf ("Error from fO08agc.\n%s\n", fail.message);

exit_status = 1;
goto END;
}
/* Initialize Q (if left eigenvectors are required) =*/
if (ileft)
{
for (i1 = 1; i <= n; ++1i)
{
for (j = 1; j <= n; ++3)
Q(ilj = 0.0;
Q(i,i) = 1.0;
}
for (i = ilo+1l; 1 <= ilo+irows-1; ++1i)
{

for (j = ilo; j <= MIN(i,ilo+irows-2); ++3j)
0(i,j) = B(i,3);

¥
fO8afc(order, irows, irows, irows, &Q(ilo, ilo), pdqg, tau,
&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8afc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥
}
/* Initialize Z (if right eigenvectors are required) =*/
if (iright)
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= n; ++3)
Z(i,3) = 0.0;
Z(i,i) = 1.0;
}
}

/* Compute the generalized Hessenberg form of (A,B) */
fO8wec(order, Nag_UpdateSchur, Nag_UpdateZ, n, ilo, ihi, a, pda,
b, pdb, g, pdqg, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8wec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Matrix A in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,
"Matrix A in Hessenberg form", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO4cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf ("\n") ;

/* Matrix B in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,
"Matrix B in Hessenberg form", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

[NP3645/7] 08yke.9

fO8yke NAG C Library Manual

/* Compute the generalized Schur form =*/

/* The Schur form also gives parameters =*/

/* required to compute generalized eigenvalues */

fO08xec(order, Nag_Schur, Nag_AccumulateQ, Nag_AccumulateZ, n, ilo, ihi, a,
pda, b, pdb, alphar, alphai, beta, q, pdqg, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08xec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the generalized eigenvalue parameters */
Vprintf ("\n Generalized eigenvalues\n");
for (i = 1; i <= n; ++1)
{
if (betali-1] != 0.0)
{
Vprintf (" %41d ($7.3f,%7.3f)\n", i,
alphar[i-1]/betali-1], alphail[i-1]/betali-1]);
¥
else
Vprintf (" %41dEigenvalue is infinite\n", 1i);
}
Vprintf ("\n") ;

/* Compute left and right generalized eigenvectors */

/* of the balanced matrix =*/

f08ykc(order, Nag_BothSides, Nag_BackTransform, select, n, a, pda,
b, pdb, g, pdg, z, pdz, n, &m, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ykc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
if (iright)
{

/* Compute right eigenvectors of the original matrix =*/
f08wjc(order, Nag_DoBoth, Nag_RightSide, n, ilo, ihi, lscale,
rscale, n, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08wjc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print the right eigenvectors =*/
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, z, pdz,
"Right eigenvectors", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
3
Vprintf ("\n") ;
}

/* Compute left eigenvectors of the original matrix =*/
if (ileft)
{
f08wjc(order, Nag_DoBoth, Nag_LeftSide, n, ilo, ihi, 1lscale,
rscale, n, g, pdq, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08wjc.\n%s\n", fail.message);
exit_status = 1;
goto END;

108yke. 10 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

¥

/* Print the left eigenvectors */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
"Left eigenvectors",
= NE_NOERROR)

if
{
¥
}
END:
if (a)
if (
if (
if (b)
if (bet
if (1lsc
if (
if (rsc
if (tau
if (z)
if (sel

(fail.code

Vprintf ("Error from x04cac.\n%s\n",

exit_status

goto END;

NAG_FREE (a) ;

NAG_FREE (b) ;
a) NAG_FREE (beta) ;

ale)

ale)

NAG_FREE (1lscale) ;
q) NAG_FREE (q) ;
NAG_FREE (rscale) ;

= 1;

) NAG_FREE (tau) ;
NAG_FREE (z) ;

ect)

NAG_FREE (select) ;

return exit_status;

9.2 Program Data

alphai) NAG_FREE (alphai);
alphar) NAG_FREE (alphar);

f08ykc Example Program Data

5
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

PR RRRPRODWN R

N
N B_DNUIO O DB

w =

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

9.3 Program Results

f08ykc Example Program Results

1.
8.
27.
64.
125.
3.
9.
27.
81.
243.

Matrix A after balancing

1 1
2 2
3 0
4 0
5 0
Matrix B
1 1
2 1
3 0
4 0
5 0
Matrix A
1 -2
2 -0
3 0
4 0
5 0

[NP3645/7]

1 2
.0000 1.0000
.0000 4.0000
.3000 0.9000
.4000 1.6000
.5000 2.5000
after balancing

1 2
.0000 2.0000
.0000 4.0000
.1000 0.8000
.1000 1.6000
.1000 3.2000

in Hessenberg form

1 2
.1898 -0.3181
.8395 -0.0426
.0000 -0.2846
.0000 0.0000
.0000 0.0000

00
00
00
00
00
00
00
00
00
00

L OOOOoO

NO O OO

0, &fail);

16.
81.
256.
625.

16.
64.
256.
1024.

.1000
.8000
.2700
.6400
.2500

.3000
.9000
.2700
.8100
.4300

.0547
.7132
.0101
.0376
.0000

.00

00
00
00
00

.00

00
00
00

32.
243.
1024.
3125.

25.
125.
625.

3125.

.1000
.6000
.8100
.5600
.2500

ONORO

.4000
.6000
.6400
.5600
.2400

oONO RO

4.7371
7.5194
-7.5927
1.4070
0.3813

.00

00
00
00
00

.00

00
00
00

w =
P ONWO

R oORNO

-4

fail.message) ;

f08ykc

da, pdqg,

:Value of N

.1000
.2000
.4300
.2400
.2500

.5000
.5000
.2500
.2500
.2500

.6249
-17.
26.
-3.
-0.

1850
4499
3643
9937

:End of matrix A

:End of matrix B

JO8yke. 11

fO8yke NAG C Library Manual

Matrix B in Hessenberg form

1 2 3 4 5
1 -1.4248 -0.3476 2.1175 5.5813 -3.9269
2 0.0000 -0.0782 0.1189 8.0940 -15.2928
3 0.0000 0.0000 1.0021 -10.9356 26.5971
4 0.0000 0.0000 0.0000 0.5820 -0.0730
5 0.0000 0.0000 0.0000 0.0000 0.5321

Generalized eigenvalues
1 (=-2.437, 0.000)
0.607, 0.795)
0.607, -0.795)
1.000, 0.000)
)

(
(
(
(-0.410, 0.000

2
3
4
5

Right eigenvectors

1 2 3 4 5
1 -4.9374e-02 -2.0772e-01 2.5702e-02 -7.4074e-02 -6.9466e-02
2 1.0606e-01 1.7848e-01 8.8325e-02 1.3545e-01 1.3605e-01
3 -1.0000e-01 -5.3742e-02 -4.6258e-02 -1.0000e-01 -1.0000e-01
4 4.3761e-02 8.0277e-03 1.3765e-02 2.6455e-02 3.1879e-02
5 -7.0192e-03 -5.5974e-04 -2.0807e-03 -3.7037e-03 -3.5534e-03
Left eigenvectors

1 2 3 4 5
1 -6.9466e-02 -2.0922e-01 -5.2678e-03 -7.4074e-02 4.9374e-02
2 1.3605e-01 1.6346e-01 1.1371e-01 1.3545e-01 -1.0606e-01
3 -1.0000e-01 -4.6314e-02 -5.3686e-02 -1.0000e-01 1.0000e-01
4 3.1879e-02 5.9054e-03 1.4799%e-02 2.6455e-02 -4.3761e-02
5 -3.5534e-03 -2.4617e-04 -2.1404e-03 -3.7037e-03 7.0192e-03

fO8yke.12 (last) [NP3645/7]

	f08ykc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	how_many
	select
	n
	a
	pda
	b
	pdb
	vl
	pdvl
	vr
	pdvr
	mm
	m
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_CONSTRAINT
	NE_NOT_COMPLEX
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

